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ABSTRACT

1

-approximation to a continuous function

by classes of fixed-knot polynomial splines which satisfy generalized convexity

constraints is presented and uniqueness is shown.

specifying the positivity, monotonicity, or convexity of the class.

Included is the possibility of

The proof of

uniqueness uses recently developed results for Hermite-Birkhoff interpolation by

splines.
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SIGNIFICANCE AND EXPLANATION

In practical applications of approximation theory, it often occurs that the
function being approximated is known to have some additional properties such as
positivity, monotonicity, and/or convexity. A best approximation may not preserve
any of these, even though such properties may be very important for the application.
In this case one should search only among approximations which satisfy the desired
side conditions of positivity, monotonicity, or convexity. These are special
cases of generalized convexity constraints.

This paper begins the study of best approximation in the mean or L_-norm by

1
fixed-knot polynomial spline functiors which satisfy generalized convexity con-

straints. As one particular example, it is shown that the best Ll-apptoxilation

to any continuous function by nonnegative, nonincreasing cubic splines with fixed

knots exists and is unique.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.




BEST MEAN APPROXIMATION BY SPLINES SATISFYING
GENERALIZED CONVEXITY CONSTRAINTS

Dennis D. Pence

Introduction

The concept of monotone approximation by polynomials was introduced by O. Shisha [12].
It has been studied by many authors including R. A. Lorentz [4), who demonstrated unique~-
ness for best approximation by monotone polynomials in the uniform and Ll-non. J. A.
Roulier and G. D. Taylor [9] have generalized the concept to include more arbitrary re-
strictions on the ranges of derivatives. If the restrictions are all of nonnegativity or

nonpositivity, they are called generalized convexity constraints.

Classes of splines satisfying generalized convexity constraints were introduced and
studied in the author's thesis [6). Best uniform approximations were characterized and
partial uniqueness was established. This paper continues the study of such splines by con-

sidering the L -norm. A characterization for best Ll-approximtion by these classes of

1

splines is given and uniqueness is demonstrated. Previous papers considering best Ll-

approximation by splines include the work of M. P. Carroll and D. Braess [2], R. V. Galkin

[3], and A. Pinkus [8].
We use results f-r Hermite-Birkhoff interpolation by splines which were developed by

the author [6], [7]. For completeness the required results are given in the following !
section.

1. Hermite-Birkhoff Interpolation by Splines

o o el

Suppose =-®» < a = § < 51<---< £ € Z b < and integers Rv with

0 q q+l

0<R,<m v=1,...q are given. Let S: = S:((Cv}:; (va:) denote the space of

PETETO

polynomial spline functions of order m with fixed knots “v } 3. each with multiplicity

q
Rv' respectively, where p = Z R\,. Thus g ¢ .sz is piecewise a polynomial of degree
v=1

(3)

at mst m -1 with g discontinuous only at a knot gv where j > m - Rv. We

adopt the convention that all elements of sg and all derivatives of elements of S: are

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the
National Science Foundation under Grant No. MCS75-17385 AOl.




defined everywhere by assuming continuity from the right, Notice that dhs: =m+ p.

We review needed facts about Hermite-Birkhoff interpolation (HBI) by polynomial

splines.

Let interpolation points

(1.1) X = {a $X) <X <ocec ; < b}

be given. A matrix

(1.2) E={e,.}),i=1,...,k;3=0,1,...m~-1

ij

is called a spline incidence matrix for X and S; provided e 3 =0, %1, or 2 and

eij--lotz only if xi-zv for some v and j;--nv. The HBI problem defined
by (EI xrs;) is:

Given any values {YU : eu = 1 or 2} and

{Yij- 8 ‘ij = =] or 2}, find g ¢ S: with
(1.3) g(j) (xi) = Y44 whenever cij =lor2 ,
(1.4) g(j)(xi-) = Yij- whenever °1j =-lor2 .

As in [6], [7], when we display such a matrix E, we indicate the relationship be-
tween the interpolation points X and the knots of the spline space 5; by drawing the
following lines:

(i) 1f X, < Ev <X we draw a solid line between the i-th and (i + 1)-th
rows extending from the (m - Rv)-th column to the (m - 1)-th column. If
more than one knot lies between X; and LR then draw several lines.

(ii) If x, = c“, we enclose in a box the entries in the i-th row from the

(m - Rv)-th column to the (m - 1)-th column.
Thus an entry of E may be -1 or 2 only if it is boxed.
Define

(1.5) ”B" o izj |°1j| )

2=




we say (E, X, s:) is full when ||E|] = dim s: =m+p. If (B, X, &) has a unique

P
solution for any given data values or, equivalently, if the only solution to the homo-

geneous problem is the zero spline, the problem is called poised. Obviously (E, X, ™

must be full for this to happen. When [[E[ <m + p, we say (E, X, S:) is guasi-
poised if the dimension of the solution space for the homogeneous problem is exactly
m+p- el .

We now define what are essentially submatrices of E. For n=0, 1,...,m~ 1

and 0 <2 <s<q+1, let k =min{i t &y <% )k, = max{i : x, < £}, and

(1.6) By 2; oY= {o,. 3 A w KooKy 1 @By = )

i)
where

rl,1!1-);,:1-(!,“01’-10:2,

1

°1j' if x, € (5'..5‘) or if i = kz' X = £, and j<m - l. v

w= b ord "

*
T ﬁ I, i 4=k =¢,ande
' 2 xi C'n

ij

L 0, otherwise.

By a simple dimension argument, it is easy to see that the following called the

local Polya conditions (LPC) for (E, X, S:) are necessary for quasi-poisedness:

(1.8) ||E(n : 2,8)|| <m=-n+p(n:gs) ,

for all n=0,1,....m=13;0<t<c8<q*+1l

s-1
J min[R, m=-n], if g +1<s ,
p(n : 2,8) = ( v=e+l %

Oy 3F 4 %1 wg
It is also easily verified that all of the (LPC) are satisfied if we have that

(1.10) ||E(n : 2,8)]] <m=-n+pln:ag,s) ,

for all {(n,2,s) :Rv<m-n, when § < v < s} .




In particular when (E, X, 5‘:) is full, the (LPC) imply that

L
(1.11) llell = 2@ = togedff 2 ] R o+ £ =1,ecc0g -
v=1

LEMMA 1.1. If ||E(O : £,8)|| =m+ p(O : 2,8) for som O<t<s<q+l or
AL e
0O<t<s<q+1l, then (E, x.s:) can be split vertically into two or three HBI pro-

blems, each defined on a spline space of order still m but with fewer knots than S:.

The “central” one of the decomposed problems has incidence matrix E(0 : £,8).

)
or if R = m for some v, then (E, x,s;) can also be split vertically into two HBI

problems considering fewer knots. E(0 : O,v) and E(0 : v,q+l) will be the incidence

matrices for these two smaller problems.

We further note that the above decompositions preserve the (LPC) and that if the

g original problem has a full matrix, then so do all of the smaller problems. Quasi-poised-
ness of (E, X, s:) is equivalent to quasi-poisedness of all of the split problems.
Similar decompositions have been noted by several authors, see [5], for example. The com-
plete details are tedious but not hard and can be found in [6].

let (E, X, s:) indicate a given HBI problem. If x, ¢ {gv)"l'. then we say that

we have a reqular sequence beginning with e 3 of order yu when

i3 = ei,j+1 Zeeex= ei,jﬂ;-l =1 with °i,j-1 =0 and .i.jw = 0 Aif either is defined.

Also if x, = Ev' then we say that we have a regular sequence beginning with o“ of

order yu when eij = ei,j+1 =eee= ei,j+u-1 =1 with j+py<m- Rv' ‘i,j-l =0 and

ei,jﬂ; = 0 if either is defined. Further a regular sequence °£j""'°£,.j+u-1 is called

A strongly regular if e, sy is defined, zero, and, in the case where
’

x, = Ev' j+puy<m- Rv. A sequence is even if it has even order and odd otherwise.
We say that a regular sequence e, j""'ei Jap-1 is supported provided there exist
’

integers il' jl' 12, 32 with 11 < i < 12, e =1lor 2,

iyd

LEMMA 1.2. If x, = ¢ for some i and v, and .11-1 for all j-o.l.....--lv-l.




s

(1.12) jl < min(j , (I'-Rv 3 xil < Lv < xill o

(1.13) i, < min(j , (-nv P Xy < B <X h

12 » and

4 q
3, 48 **z / ((\,)l '

(1.14) 1, it x = cv and 32 < I-Rv ¢

°t2'32 ¢ { 2

\-1 or 2, if x"2 = (v and j2 > --Rv

The problem (E, X, 5‘:) is called weakly conservative (C) if every supported strongly
regular sequence is even.
THEOREM 1.1. Suppose (E, X, s:) satisfies the (LPC) and (C). Then it is quasi-poised.
This theorem generalizes the sufficiency theorem of Atkinson and Sha.ma for HBI by
polynomials [1]. The proof can be found in [6]), (7).
We shall need the following technical lemmas. All three lemmas concern attempts to
add conditions of some sort to a given HBI problem.
LEMMA 1.3. Suppose (E, X, s:) satisfies the (LPC) but when some strongly regular

sequence in E is extended to have an additional one to the right giving the matrix E,

then the (LPC) are violated. There exists £ ¢ (Ev)?-u X so that when ¢ is added as

a simple knot to the spline space, then (E , X, .5‘;.1({&“)?: £; {Rv}g. 1)) satisfies the (LPC).

R |

Proof. Suppose e, g T S e 1 is the strongly regular sequence of E and that i
’ r i

eij is changed from a zero to a one to obtain E. Then an<j ,0<ce<8<q+1l I
with x, € [£,,6] so that for s;' " ,
(1.15) |E : 2,9 = [|E(h : 2,9 +1 |

=m-n+pln :2,5) +1 .

Without loss of generality assume that (1.15) cannot happen first for any n > n and

secondly with n for any i and § with lzl,zil < [5,’,58].




(1.16) € = min ((x=x, 0ol -x) (=€ |+ €, »x ) .

We choose £ ¢ (xi-c.x“c)\(xi) in such a way that when £ is added to the knot

set, i.e. {(\'})gﬂ B (;v)g U {g} properly ordered, ¢ = (i ’ ui «l, a2 2<lcm+l,

we have
(1.17) B : ¢, 0]l < ||E(n : 2,840) | and
(1.18) Etn : L4} ]| < ||Btn : 28402

with respect to o 1({{\‘,)2*1 i {R;)gﬂ) 5

pt
It is easily seen that this can be done. The proof is completed by checking the

various ways E might violate the (LPC) with respect to the new spline space. If this

happens, then (E, X, s‘;) must violate the (LPC), contrary to hypothesis.

A condition corresponding to e = 1 is called a Lagrange condition and we say

i, 0
that we are adding a Lagrange condition at t to an HBI problem (E, X, S:) if a zero

in the j = 0 column is changed to a one, possibly by adding a new row to E if t ¢/ X.

LEMMA 1.4. Suppose (E, X, fp) satisfies the (LPC) but is not full. Then there exists
apoint t ¢ XU {g )] so that a Lagrange condition can be added to (E, X, s:) with-
out violating the (LPC).

Proof. If ||E(O : £,8)]| =m+ p(0 : ,5) for some 0 <t <s<a+l or

0<% <s<q+1, then we can decompose according to Lemma 1.1 and consider one of the
split problems which is not full. Thus without loss of generality we assume this never
happens. But then any Lagrange condition can be added without violating the (LPC).

LEMMA 1.5. Assume that (E, X, s:) satisfies the (LPC) but is not full. Without loss

of generality, assume that [(Ev}g U {b}] € X, possibly by having some rows with all

zero entries in E. Then we can "fill" E in such a way that the (LPC) remain valid by

(i) changing some "boxed" zeros to ones,

(ii) changing some "boxed" ones to twos, and/or

(iii) changing some zeros to ones in the last row corresponding to b.

-6=
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Proof. Inductively for & =1, 2, ... , 9 we make changes of type (i) or (ii) for “boxed™
entries corresponding to the interpolation point and knot (‘ so that (1.11) will be valid
for that integer after the changes are made. Further we make changes one at a time for
entries with j-index as large as possible without violating the (LPC). To show that this

is always possible, suppose we have done this for £ = 1,2,..., 2 -1 (if any) and have

L
(1.19) Nell - lleo : tuqenll 2 TR . 2=2,2,...01 .
us]l
Suppose xx. = El, 1f
lt
(1.20) el - llew : t.qenll 2 TR, .
=]l
then there is no need to make any changes in the i _-th row. If e, 3 = -] or 2 for all
-t
j=m-~- Rt seseom = 1, then (1.20) holds. Suppose
*
(1.21) e = 0 or 1 where m - R, s bR
i3, s T
(1.22) e, s=lor2 forall J= (m-R, )oeecsd, -1 (if any) ,
1.3 R, *
but e, 3 cannot be changed to -1 or 2, respectively, without violating the (LPC). By
*'Jx

(1.10), there exist integers #, &, and s with L < i <s, n<i, . By, S n for all

f <v<s (if any), and

(1.23) llew : &, =m-n+pn: i,8) .
Then
(1.24) llell - lleco : 2,,q+1) Il

> (llel - llewo : ey + e« ol

[IECh : 2,080 || » if 2, < 8,
- +max[0, n=m + R

]
- - %
max [0, m-R, “nl,if g, =8
*

-




.'l
> R
& vz-l Yy

Again (1.20) holds. Thus we can always accomplish the induction step.
If the matrix is still not full after all of these changes, then we make changes of
type (iii) at entries with j-index as large as possible without violating the (LPC). We

argue in a similar manner that if it is not possible to change some such entry, then it is
0.0

0 1 0

0 (s

The display E is quasipoised and E is poised by Theorem 1.1.

unnecessary to do so.

Lt Example 1.1.

2]

L}
o = O 0 ©
© © ©o ©o ©

becomes via the procedure given for Lemma 1.5

|
L}
O .o O .0

2. Best Ll-approximation by Splines with Generalized Convexity Constraints

Let integers O_fko <k1 SR <k':n- 1 and ev-t l1,v=0,1,...,w be given.

Suppose S:C Cla,b], i.e. Rv <mv=1l...,q and m> 1.

Define

(k)

(2.1) c-wes::eo"(e)lo,

v

a<st<b,v=0,1,...,u} .

Recall we assume right continuity of all spline derivatives. Also for every g ¢ G we

have

(k)
v
(2.2) £,.0 T IED M K SR .

v




b
For an integrable function h, let ||h||1 = falh(t)ldt . Suppose f is in
Cla,b], the space or continuous functions defined on [(a,b), but is not in G. Then a
best Ll-approximtion to f from G is a spline g, ¢ G such that

(2.3) g, - rll1 = inf ||g - fll1 .
geG

Denote by Pc(f) the collection of all such best approximations. PG(I) # ¢ because G
is closed, convex, and finite-dimensional. We have the following characterization theorem.

THEOREM 2.1. Assume f ¢ Cla,b] and G is defined as in (2.1). Then there exist

(1) functions ¢,...# , r>1 where |¢ (t)| =1 for almost every
e [&D) s e ) o, ¥,
an HBI problem (E, X, S:), ||B|| +r<m+p+1 where eij 0 only if

jnkv for some v,

positive scalars )‘1' alne ')‘r' and

scalars (pij : eij = Jor 2}, (uij : eij = =1 or 2} where

sgn uij s sanie whenever j = kv

e (3)
121 Aifawi(t)v(t)dt + {{uijw (x,) : e

ij-lorz)

i
|
i
|
|

=i y) P o 4
+Z(uij v (x;-) ey Jlor 8} im0,

for all e 5,

such that g € G is in P,(f) if and only if
b
(2.5) fa ¢, (B)[g(t) - £(v))at = |lg - £]| 1ri= Lo,

(2.6) g‘j)(xi) =0, whenever e.. =1or 2, and

ij

(2.7) g(j)(xi-) = 0, whenever e i wleor & .3

ij




Proof. This theorem is a specific case of a theorem of Rozema and Smith [10, Theorem 4.1)

once we note that it is easy to find a polynomial ¢ ¢ S; satisfying

(k)
(2.8) e, ¥ (8 >0 ac<t b vEOl,... W .

LEMMA 2.1. If f ¢ Cla,b]l, g, and g  are elements of P (f), and g --1-(9 +49,),
- L e WY o erm— —— —— 0 2T 2

then g, - g, vanishes at the zeros of g, - f.

This lemma can be found in [2] and is a special case of (10, Lemma 6.1].

THEOREM 2.2. For every f ¢ Cla,b], there is a unique best Ll-approxiuuon from G

defined as in (2.1).
Proof. Let @ ... s Mseeesdps (B, X, s:), {uyy}, ana (uij-) be as guaranteed by
Theorem 2.1. Without loss of generality we may assume (E, X, S:) is quasi-poised since
any dependency in these conditions could be used to accomplish (2.4), (2.6), and (2.7)
with a smaller HBI problem made up of independent conditions.
)
Suppose 9, and g, are both in PG(f). Then 9 = 2(q1 + qz) is also in PG(Z)

since it is convex. Applying (2.5) to qo, we see that almost everywhere that

go(t) # £(t) we have
(2.9) wi(c) = sgn[go(t) =ty 1= 1,.0.5

Let ¢ be the right continuous function defined by

(2.10) ¢(t) = lim sgn[go(t+c) - f(t+e)] .
€+0
Define
(2.11) T = closure {t ¢ [a,b] : &(t) = 0 or ¢ changes sign at t} .

Thus go(t) = f£(t), for every t € T (an possibly at other isolated points where 99 - f
doesn't change sign).

Suppose g ¢ PG(f). If eij =1, then j-kv for some v and g‘j)(xi) = 0.
By the definition of G in (2.1), q(j) does not change sign. Using the zero counting

procedure for splines devised by Schumaker [11] (see also [6], [7]), this means that x
(3)

i

is in some interval (possibly degenerate) where g is identically zero and that this

«10-




interval is either an even zero for q()) or it contains one of {a} or {b}. We con-

=1, and e is not “"boxed", then

clude that if a X, by 3 -
< i <b, J<m 170 i,§41

i)

(2.12) Q(j’l)(x )} =0 e

i

One by one, we add enough of the zero conditions designated in (2.12) to the HBI pro-

blem (E, X, S:) to assure that it has no odd strongly regular sequences in rows for

which a < x; < b and, if the sequence begins with e o
.

ditions from (2.12) to (E, X, S:). if necessarv, to assure that it has no even strongly

for which xg ¢ T. We add con-

regular sequences beginning with ei if x; € TN (a,b). If it is necessary at each step

0
’
in order to preserve the (LPC), a simple knot is added to the spline space as described in

Lemma 1.3. Then we define scalars ﬁi 5 possibly zero and having no particular sign, so

that (2.4) remains valid, even for the enlarged spline space. The fact that such constants

u can always be chosen follows from elementary linear algebra and Theorem 1.1. Thus we

i)

obtain (E, X, Sg). {aij}’ and (Gij-} satisfying the (LPC) of the desired form with

r

b
=5 2 8)
(2.13) 121 IR CITOL S z{“ij "

(xi) : eij = 1 or 2}

Ny 18, . nslor2la0 ,

+ Z{ﬁij- 0( )t i3

for all ¢ € sg

and for any g € PG(f) C Sg = Sg + (in particular for 9, and g,) ,

g(j)

(2.14) (x;) = 0, whenever éij =1or 2, and

(2.15) q(j)(xi-) = 0, whenever éij ==l or2 .

Choose a maximal subset tl""'tn from T \ {x1 8,710 e 1} so that when Lagrange
conditions at t ,...,t ~are added to (E, X, Sg) to obtain (E,, X, Sgb, the (LPC)
are still satisfied. Note that (El, xl, SE) satisfies (C) so by Theorem 1.1 it is
quasi-poised.

Claim 1: eyl =m+p .

-11-




e i o

r.—-,-“mrv S

—— """""""'""""“"""""""""-'--!----!!gzzungg!gg-g

If not, then by Lemma 1.4 there exists a point t_ ¢ )tl v (Ev)‘: so that a Lagrange

condition at t, can be added to get (E,. X,, Efs). t, ¢ T or else it would have been

added in before using the maximality of the chosen tl""'tu'

We obtain a full (E, X, SE) by applying Lemma 1.5 to (tz, xz. Sg), if necessary.

The only Lagrange condition that might possibly be added in this step is one at b. Note

that this full HBI problem will still satisfy (C) as well as the (LPC) so by Theorem 1.1

it is poised. There exists a unique Y, ¢ Sg with

¥, (t,) =0(t,) 20 ,

(2.17) be T (X)) 0, whenever 53 lor2 and x, =t, ,

(3 =
¥, (xi-) = 0, whenever eij =-lor 2 .
First y,(t) =0 for all te T If te T\ {t,....t)}, then te (£ L]

where equality occurred in the (LPC) indexed by (0, &, s) for (El' xl. S:-:), hence in

E % 8D ans ¢ o (€,,8 .- (E, X, S:-:) can be decomposed according to Lemma 1.1 and

the split problem involving t will have all zero data values from (2.17). Thus ¥, is

identically zero on [51. Es] .

1f ||E(© : 2,8 =m+p(0 : 2,s) for some 0 < % <s <q+1l where t, / [£,.5],

then the problem decomposes according to Lemma 1.1 again. Examining the part of (2.17)

that each split problem must satisfy, we conclude that ¢,(t) = 0 for all ¢t ¢ (a,&s] if

E,Z < t, or V(t) = 0 for all t e [gz,b] if t, < .

1f X =g *t, and &, =1 forall j=01,...,m-R -1, then ( X s‘g)

can be decomposed according to Lemma 1.2. As above the split problem not involving t_

will be homogeneous so ¢, is identically zero either to the right or the left of X .

Suppose y,(t) = 0 for all t e [E ,E ] for some 0 <8, <s,<q+ 1, hence
0 ¢

* - — -
t, £ [El kg ]. Let (E, X, 5’;) denote (E, X, S:) with the Lagrange condition at ¢t
0

«l2=




deleted. Let to be any point in (E'_ .E. ) \ X. A Lagrange condition at to cannot be
0 0

added to (E‘, X, S‘E) without violating the (LPC). If it could be, it would give a full
poised HBI problem for which the nontrivial y, satisfies all zero data values which is
impossible. Thus there exist integers 0 < £ <s <q+ 1 with § <t < £, ¢t, ¢ [£.0],
and ”E.(O : 2,8)|] =m+ PO : 2,5), hence ||E(0 : 2,8)]] =m + 5(0 : 2,8). As before

either y,(t) =0 for all te [a,§ ] if £ < t, or y,(t) =0 forall te [f, ,b]
0 0 0

p S S R S
%o

We conclude that ¢, is identically zero except on some knot interval lEl -E. ]
L -

containing t, (possibly [a,b]). On this interval there are only a finite number of

points from T and only a finite number of points where ¢, is zero. Any sequence be-

ginning with ei,O for which Ei.. < xg < ;s‘ and x; = t, is strongly regular.
Further
(2.18) "E'(O : 2,8)|| <m+p(O:2,5) if 0<f2<s<qg+1
N
and (Ez.is) (Eg..is.) ¢
Claim 2: sgn y,(t) = &(t) , for a.e. t € (g ,&_ 1]
* *

Suppose y, changes sign at some to

for some i and

€ (5, +E ) \ [TV {t,}] where ¢ does not
* st

change sign. If t; = ;i e

regular even sequence €, _,...,
i,0
)

(to) = 0. Dpefine (EO,

1, then 31 o begins a strongly
’

7 and since t_ must be an odd zero for
i, pu-1 0

150 5

B e
; Sg) to be (E, X, sg) with &

* o
to (B, X, Sg) to obtain

Vyr 4'.(“ changed from

)

zero to one. Otherwise add a Lagrange condition at to

(Eqr X, sg). Either way (Ej, X, sg) is full and by (2.18) must satisfy the (LPC). By

construction (C) is satisfied so by Theorem 1.1 this is a poised problem. This is impossible

since the nontrivial V, satisfies the homogeneous problem. Similarly there cannot exist a

point to € (El 'Es ) N T where ¢ changes sign but Y, does not. Thus Claim 2 is
* *
established.
Then

b b
(2.19) fawi(t)ua(t)dt = [ lv.®rjae s 0 , 1=,




This together with (2.17) gives a spline ¥, which contradicts (2.13) Thus Claim 1 is

established.

satisfies the homogeneous

Using Lemma 2.1, (2.14), and (2.15) we have that 9, -9,

poised problem problem (El' xl. Sg) and 9 -9, ¢€ s: C sg. Thus 9, = 9,- Since 9

and g, were arbitrary elements of Pc(f), the proof of the theorem is complete.

3. Monotonicity and Convexity

Definition (2.1) for G in the previous section is a natural generalization to splines
of the notion of monotone polynomials introduced by O. Shisha [12] (see also [4]). Included
is the possibility for requiring nonnegativity or nonpositivity by choosing ko = 0. Since
we made the assumption that all of the elements of our spline space S: were continuous,
choosing some kv = 1 requires the usual monotonicities, either nondecreasing or non-
increasing.

1f RV <m=-1,v=1,...,9, then some kv = 2 implies that all of the elements of
G are either convex or concave. However it is reasonable to ask for convexity c. concavity

even if some of the knots have multiplicity m - 1. Convexity is well defined (although not

in terms of the second derivative) for linear splines, i.e. continuous piecewise linear

functions, for example. Similarly monotonicity is well defined for discontinuous splines.
We briefly indicate how the preceding section would need to be modified to include
the requirement of convexity when Rv =m-1 for some of v =1,...,9. We ask that

(3.1) w(Z)(t) >0, a<t<b, and

(1

(3.2) w‘l)(gv+) - )(gv-) > 0 whenever Rv =gl . ﬂ

The conditions in (3.2) are also linear constraints on 5:. It is not difficult to show
that there exists a spline in Sg which satisfies all of the constraints including these
strictly so that the theorem of Rozema and Smith [10, Theorem 4.1] applies.
If none of the constraints of type (3.2) are chosen by the theorem of Rozema and
Smith, then we proceed exactly as in the previous section. On the other hand if one of s

these "jump" constraints is active and is chosen, that implies that for g ¢ PG(f)

-14-




1)
g‘ (1)

(3.3) €k =g Mg,

i.e. the knot ;v is really only of multiplicity m - 2 for all splines in PG(fi. It is

easy to show that PG(E) cp n'f) where S:, is Sz with the knots chosen in (3.3)

ens T,

having multiplicity only m - 2 so that p' < p. 1In fact the above inclusion is an equality

and P (f) can be characterized using the arguments of the previous section. In parti-
GNS
pl

cular we can still conclude that uniqueness holds.

4. Further Extensions

With only minor modifications the work of this paper can be extended to the problem

of finding a best global L1

function F from G as defined in (2.1). Such best global approximations are also called

~approximation to a compact (in Llla,b]) set of continuous

restricted Chebyshev centers for F with respect to G or best approximations to the
elements of F simultaneously. The methods of the paper by Rozema and Smith [10] apply in
a straight-forward manner.

The techniques we have used can also be applied to the more general problem of best
Ll-approximation by splines with restricted ranges of their derivatives. In the uniform
norm, the corresponding polynomial problem was introduced by Roulier and Taylor [9] and
the spline problem was studied in [6]. We wish to point out the significant differences
between uniform and Ll-approximation by these restricted splines.

Examining the proofs in [9] and ([6], only the functions which bound the ranges of
the derivatives (other than the zero derivative) need to be assumed to be differentiable
in order to guarantee uniqueness in the uniform norm. In Ll' the functions which bound
the range need to be differentiable as well in order to carry out the analog of Claim 2 in
the proof of Theorem 2.1. The problem of one-sided Ll-approximation of a differentiable
function by splines which was studied by A. Pinkus [8] is a special case where the given
function is also the range bound.

If there are bounds on the range, then for uniqueness in the uniform norm to be

assured, the assumption is needed that the given function satisfies these range bounds at




least within some € > 0, where € is strictly less than the distance from the given
function to the set of restricted splines. If this is not the case, then a single linear
functional (a point evaluation) in C.[a,b] may be a positive error-extremal and a
negative constraint-extremal or vice versa in the terminology of [6]. No such assumption

is needed in L, although the assumption that the given function is continuous is needed.

1
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